Geotechnical Implications of Climate Impacts in Permafrost

John Thornley, PE & Brenton Savikko, PE
Golder Associates, Inc.
How Do Changes in Permafrost Affect Geotechnical Engineering?
What are the Tools We Use?
Are There Other Tools?

- Climate Data
 - Air Temperatures, AFI, ATI

FIGURE 3-5 Assumed sinusoidal annual variation in surface temperature.
Source: Reproduced from Aldrich and Paynter 1966.
Air Temperatures

Note: Data is generally from low-lying coastal and river valley areas. It is probably not valid for higher elevations.
Air Freezing Index
SNAP – Scenarios Network for Alaska & Arctic Planning

- A database created by UAF of free climate data for Alaska, including high resolution monthly climate data for ~1901-2100.
- 5 world recognized Global Climate Models used to simulate historical and future climate conditions
- 3 Emission Scenarios to model various climate trends
SNAP – Scenarios Network for Alaska & Arctic Planning

• Final product is ‘downscaled’ climate data on 2 km by 2 km grid for entire state which accounts for land features such as slope, elevation and coastline, as well as knowledge of local climate experts.

• SNAP purpose is to help people plan in a changing climate.
SNAP – Emission Scenarios

Average Monthly Temperature for Bethel, Alaska
Historical PRISM and 5-Model Projected Average, Low-Range Emissions (B1)

Average Monthly Temperature for Bethel, Alaska
Historical PRISM and 5-Model Projected Average, High-Range Emissions (A2)
SNAP – Scenarios Network for Alaska & Arctic Planning

Average Annual Air Temp vs Time - Barrow, AK

- Measured Average Annual Air Temp
- Projected Average Annual Air Temp
SNAP – Scenarios Network for Alaska & Arctic Planning

Average Annual Air Temp vs Time - Bethel, AK

- Measured Average Annual Air Temp
- Projected Average Annual Air Temp
Table X: Engineering Climate Indices for Bethel, Alaska

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Air Temperature</td>
<td>29.4 °F</td>
<td>31.8 °F</td>
<td>33.0 °F</td>
</tr>
<tr>
<td>Average Freezing Index</td>
<td>3650 °F-days</td>
<td>3010 °F-days</td>
<td>2620 °F-days</td>
</tr>
<tr>
<td>Average Thawing Index</td>
<td>2700 °F-days</td>
<td>2920 °F-days</td>
<td>2970 °F-days</td>
</tr>
<tr>
<td>Design Freezing Index</td>
<td>4700 °F-days</td>
<td>4210 °F-days</td>
<td>3380 °F-days</td>
</tr>
<tr>
<td>Design Thawing Index</td>
<td>3160 °F-days</td>
<td>3440 °F-days</td>
<td>3380 °F-days</td>
</tr>
</tbody>
</table>

Notes: 1) Projected by UAF SNAP, Composite of 5 Global Climate Models, Emission Scenario A1B
2) Air temperatures are estimates prepared by UAF SNAP
Climate Impacts

- Thicker active layer
- Warmer permafrost
- Shorter winter season
- Degrading permafrost where initially warm
- Increased coastal erosion
- Changes in river flooding patterns
- Increased risk of slope instability
Change in Conditions = Change in Permafrost
Increased Coastal Erosion
Riverbank Erosion
Failing Infrastructure
Failing Infrastructure
Failing Infrastructure
Increased Risk of Slope Instability
Increased Risk of Slope Instability
Permafrost Foundation Design Principles

Basic Principles

I - Preserve the frozen condition
II - Design for thaw if the settlements can be kept within allowable limits

Variations

Preconstruction thawing
Preconstruction freezing of degraded permafrost
Permafrost Pile Design

Initial Ground Temperatures

32°
Pile Capacity is Very Sensitive to Warming

- If a pile design is based on 30°F
- At 31°F, only 50% remains
- At 31.5°F, only 25%
- So, why not design for the unfrozen case?
What happens if the permafrost degrades
Pile Performance in Degrading and Thaw-unstable Permafrost
Foundation Design Options

- Post and pad footings
- Driven pile (steel pipe or H)
- Drilled and slurried timber or steel pile
- Drilled and slurried thermopile
- Torqued steel screw piles
- Steel space frame (Triodetic®)
- At-grade with insulation and subgrade cooling
Post and Pad Foundations

- Bearing on permafrost below the depth of future thaw
- Connection with pad must resist frost heave forces on post
- Can be insulated and cooled if fill material is available
Driven Piles

- Keep frozen or design for settlement and downdrag loads
- Must be deep enough to resist frost heave
- Installation is sensitive to soil type and ground temperature and requires heavy equipment
Drilled and Slurried Piles

- Allows for verification of permafrost condition
- Easy to measure temperatures
- Must be deep enough to resist frost heave
- Requires drill and slurry
- Pipe piles or secondary pipes allow for future cooling systems
Drilled/Slurried ThermoPiles

- Provides long term cooling of the soil and highest adfreeze strength
- Removes frost heave
- Requires drill and slurry
- Can cause frost heave below the tip
ThermoPile Cooling

Measured Temperatures

Air Temperatures

4-Oct 8-Oct 12-Oct 16-Oct 20-Oct
At-Grade Systems

- Provides positive support if perimeter thaw is controlled
- Used for concrete and timber floors, fuel tanks and water tanks
- Requires a sand or gravel fill or super-thick EPS
- Snow drifting is aggravated
- Frost heave is a risk if unfrozen zones are present
- Design for the warmer winters
A Risk Based Evaluation

• How sensitive is the project to climate impacts and what are the consequences of potential failures

• The relationship between sensitivity and consequences defines the risk that climate impacts pose to the project

• The degree of sensitivity and the severity of the consequences are used to establish the level of climate analysis
Sensitivity to Climate

- Initial permafrost temperatures
- Soil’s sensitivity to temperature changes
- Changes in surface conditions
- Lifetime of the project
- Level of over-design or safety margin
Level of Analysis

• Level A - Quantitative, numerical w/ peer review and field monitoring
• Level B - Limited quantitative w/ field monitoring
• Level C - Qualitative w/ professional judgment
• Level D - Analysis of climate impacts is not needed
Our goal as Alaskan designers should be to reduce Alaska’s vulnerability to climate impacts.

- Our factors of safety should reflect our level of ignorance and the importance of the project.
What Can You Take Home From This Presentation?

• Climate will impact your foundation
• It is more cost effective to address the potential effects of thawing permafrost during design rather than 5 to 10 years down the road
• The engineering design teams that you select should anticipate climate impacts for the life of the structure
• You should engage your design team and discuss their climate assumptions
• There are current tools to aid in developing appropriate climate assumptions
Acknowledgements

• Duane Miller, Rick Mitchells, and others from Golder
• David Lockard of AIDEA
• Arctic Foundations, Inc.
• The Internet

QUESTIONS?